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In the present paper, tensile experiments of SiC fiber bundles under different strain rates
(quasi-static: 10−4–10−3 s−1, dynamic: 200–1200 s−1) are carried out and the corresponding
stress-strain curves are obtained. It is found that the mechanical properties of SiC fiber
bundles are rate-dependent: the elastic modulus E, strength σb and the failure strain εb

remain unchanged under quasi-static condition, while they apparently increase with
increasing strain rate under dynamic condition. Based on the fiber bundles model and the
statistical theory of fiber strength, a bi-modal Weibull statistical model of the strain rate
dependence is adopted to describe the strength distribution of SiC fiber, and the Weibull
parameters are obtained by the fiber bundles testing method. Consistency between the
simulated and experimental results indicates that the model and the method are valid and
reliable. C© 2005 Springer Science + Business Media, Inc.

1. Introduction
Continuous SiC fiber has been an attractive reinforce-
ment for the ceramic and metal matrix composites due
to its advanced mechanical properties (high specific
strength, good elevated temperature properties and so
on) and the good compatibility with the matrixes. So
far, a lot of studies have been focused on the quasi-static
mechanical properties of SiC fiber [1, 2] and little on its
dynamic behaviors. Since it is inevitable for the fiber-
reinforced composites to confront with the dynamic
loading and the fiber is the main load-bearing element,
it is important to have an understanding of the fiber
strength at high strain rate.

Usually the strength of the single fiber follows a sta-
tistical distribution and the quasi-static statistical pa-
rameters can be obtained by either of two experimental
procedures, i.e., single fiber testing and fiber bundle
testing [3]. However, for the dynamic parameters, ow-
ing to the technical difficulties, there was little until Xia
et al. [4, 5] successfully performed tensile impact tests
on fiber bundles, and extended the method presented by
Chi et al. [3] for determining quasi-static mechanical
parameters of single fiber through fiber bundles testing
to the dynamic condition. Wang et al. [6] established a
bi-modal Weibull distribution model for strain rate and
temperature-dependent fiber strength. The method for
determining mechanical parameters of fiber by tensile
impact tests of fiber bundles is therefore established.

Based on the above testing method and models, the
effect of the strain rate on the SiC fiber is studied and
characterized in the present paper.
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2. Tensile experiments
2.1. Experiment procedure
The test material is Nicalon SiC fiber bundles, which
is manufactured by Nippon Carbon Co. Ltd., with the
trademark NLM202. Each bundle contains 500 fibers
and has a cross-sectional area of 8.667 × 10−2 mm−2.
The density of the fiber is 2.537 g/cm3. Quasi-static
(with the strain rate ranging from 0.0001 to 0.001 s−1)
and dynamic tensile test (with the strain rate ranging
from 200 to 1200 s−1) were performed in a Shimazu
DT-5000 testing machine and a self-designed Sepa-
rated Hopkinson Tensile Bar [7], respectively. The fiber
bundles specimen and its connection with the bars are
shown in Fig. 1. First the lining block (1) are glued on
the supplement plate (2) perpendicularly, 18 fiber bun-
dles (3) are wound in parallel onto the lining blocks,
so to make a fiber bundles specimen. In the quasi-static
test, the specimen is glued to the slots of two short metal
bars (4) and (5) using a high shear strength adhesive, the
short metal bars are clamped by the collets of Shimazu
DT-5000 during testing; in the dynamic test, the speci-
men is glued to the slots in the ends of the input bar (4)
and output bar (5) with the adhesive. The supplement
plate is taken off before testing.

2.2. Experimental results and discussion
The stress-strain curves of SiC fiber bundles at dif-
ferent strain rates are shown in Fig. 2, and the me-
chanical parameters in Fig. 3 and Table I. In the test
at ε̇ = 0.0001 s−1 and ε̇ = 0.001 s−1, the integral
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Figure 1 The fiber bundles specimen and its connection: 1. lining block,
2. supplement plate, 3. fiber bundles, 4. input bar (or short metal bar),
and 5. output bar (or short metal bar).

Figure 2 Stress-strain curves of SiC fiber bundles under different strain
rates.

Figure 3 Mechanical properties of SiC fiber versus log(strain rate).

T ABL E I Mechanical properties of SiC fiber under different strain
rates

ε̇ (s−1) E (GPa) |�E/E | εB (%) |�εB/εB| σb (GPa) |�σb/σb|

10−4 132 3.0% 1.15 1.7% 1.35 2.2%
10−3 133 2.3% 1.16 2.6% 1.37 1.5%
200 166 2.3% 1.26 3.2% 1.85 2.7%
700 172 0.9% 1.38 1.4% 2.05 1.5%
1200 175 1.2% 1.45 0.7% 2.19 2.7%

stress-strain curves were not recorded because of the
limit on the recording velocity of the Shimazu DT-
5000 testing machine. From Fig. 3 it can be seen that
the SiC fiber is rate-dependent, the elastic modulus E ,
strength σb and the failure strain εb remain unchanged
under quasi-static condition, but apparently increase

with strain rate under dynamic conditions. Hence, the
relationship between these parameters and the strain
rate can be simulated as the following exponential func-
tion:

σb = σb0

(
ε̇ + ε̇σ t

ε̇0

)mσ

εb = εb0

(
ε̇ + ε̇εt

ε̇0

)mc

E = E0

(
ε̇ + ε̇Et

ε̇0

)mE

(1)

where ε̇, ε̇0, σb0, εb0 and E0 are strain rate, reference
strain rate, reference strength and reference modulus,
respectively. mσ , mε and mE are the rate sensitivity
coefficients. ε̇σ t, ε̇εt and ε̇Et are the transition strain
rates. The mechanical properties of SiC fiber is highly
rate-sensitive when the strain rate exceeds a transi-
tion strain rate, while remaining unchanged when the
strain rate is below the transition strain rate. Assuming
ε̇ = 200 s−1, we obtain the simulated curves by using
the least squares method:

σb = 1.85 ×
(

ε̇ + 7.06

200

)0.09201

εb = 1.26 ×
(

ε̇ + 64.98

200

)0.0774

E = 166.3 ×
(

ε̇ + 0.086

200

)0.02934

(2)

Dashed lines in Fig. 3 are simulated results, which fit
with experimental data very well.

3. Statistical constitutive model
of the fiber bundles

To characterize the strength distribution of SiC fiber, a
fiber bundles model is presented in this paper, as shown
in Fig. 4. In this model the N parallel fibers of the
same length L , cross-sectional area A, are rigidly fixed
between the two ends. The following three terms are
assumed:

• Each fiber remains completely elastic until it rup-
tures when the tensile force in the fiber reaches its
rupture strength

• The interaction between fibers is neglected. As n
single fibers break, the residual load is equally ap-
plied to the N − n surviving unbroken fibers. The
load and stress of the fiber bundles can be described

Figure 4 Model of fiber bundles.
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as:

P = EεA(N − n) (3)

σ = Eε

(
1 − n

N

)
(4)

• The strength of the single fiber is satisfactorily
given by a particular probabilistic distribution. For
failure analysis of a brittle material, the weakest
link approach is usually adopted as a criterion of
failure; that is, a brittle material fails when the
stress at any one flaw becomes larger than the abil-
ity of surrounding material to resist local stress.
The cumulative distribution function can be given
by:

G(ε) = n

N
= 1 − exp

[
−

(
Eε

σ0

)β]
(5)

where β is the shape parameter and σ0 is the scale
parameter. In recent years, however, it was pro-
posed that the distribution should be given by the
modified modal Weibull distribution based on the
multi-risk model, if two or more kinds of strength-
limiting defect populations exist together in brittle
material. For two concurrent flaw populations, a
bimodal Weibull distribution function is described
as following:

G(ε) = n

N
= 1 − exp

[
−

(
Eε

σ01

)β1

−
(

Eε

σ02

)β2
]

(6)

Then the stress-strain curve of fiber bundles can be
rewritten as:

σ = Eεexp

(
−

(
Eε

σ0

)β)

(single Weibull distribution) (7)

σ = Eε exp

[
−

(
Eε

σ01

)β1

−
(

Eε

σ02

)β2
]

(bi-modal Weibull distribution) (8)

Equations 7 and 8 are statistical constitutive equations
for single Weibull distribution and bi-modal Weibull
distribution, respectively. For single Weibull distri-
bution, we take double logarithms on both sides of
Equation 7, i.e.,

Ln

[
−Ln

(
σ

Eε

)]
= βLn(Eε) − βLnσ0 (9)

Based on Equation 9, the stress-strain curve of fiber
bundles can be rewritten to a straight line in logarithm
coordinate system, and β and σ0 can be determined
according to the slope and intercept of the straight line.

By taking double logarithms on both sides of both
sides of Equation 8 one can obtain:

Ln

[
−Ln

(
σ

Eε

)]
= Ln

[
−

(
Eε

σ01

)β1

−
(

Eε

σ02

)β1
]

(10)

The non-linear parameters σ01, σ02, β1 and β2 can be
determined by the regression analysis method [8]. Let

y = Ln[−Ln(σ/Eε)] (11)

x = σ (12)

b1 = σ01, b2 = σ02, b3 = β1, b4 = β2 (13)

substitute Equations 11–13 into Equation 10:

y = Ln

[(
x

b1

)b3

+
(

x

b1

)b4
]

(14)

and

dy = − b3/b1

1 + u2/u1
db1 − b4/b2

1 + u1/u2
db2

+ Ln(x/b1)

1 + u2/u1
db3 + Ln(x/b2)

1 + u1/u2
db4 (15)

where

u1 =
(

x

b1

)b3

, u2 =
(

x

b2

)b4

(16)

From experimental data, the value of the modulus E
can be estimated. Every bi-modal Weibull Plot curve
can be regarded as a combination of two straight lines,
each of which provides initial values of b1, b2, b3 and
b4. In Equation 15

dy = ya − yb (17)

where ya is the result of Equation 11 and yb is the result
of Equation 14. Each curve contains hundreds of points,
so the value of dbi (i = 1, 2, 3, 4) can be obtained from
Equation 15 by using the least-squares method. The
values of bi + dbi (i = 1, 2, 3, 4) can be seen as initial
values and the steps mentioned above can be iterated
until |dbi| (i = 1, 2, 3, 4) are less than certain given
small values.

On the basis of Equation 9 and stress-strain curves of
fiber bundles, typical Weibull probability plots of SiC
fiber under different strain rates are drawn in Fig. 5. It
can be seen from Fig. 5 that the Weibull plot of SiC
fiber appear approximately bi-linear under high strain
rates, which means there are probably two kinds of
strength-limiting defect populations exist together in
the SiC fiber [7, 9, 10]. Hence, in the present paper,
a bi-modal Weibull model is adopted to describe the
statistical damage tensile procedure of the fiber bundles.

According to the above Weibull plot, one can obtain
the Weibull distribution parameters of the fiber under
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Figure 5 Weibull plot for SiC fiber bundles under different strain rates.

Figure 6 σ01 and σ02 versus log(strain rate).

dynamic condition. Under the quasi-static loading con-
dition, because the stress-strain curves are not integral,
we can only get the low part of the Weibull plots, i.e.,
the strength distribution of those fiber with relative low
strength. In Table II the values of β1 and β2 at the quasi-
static condition are assigned with the average values of
β1 and β2 at the dynamic condition, according to the
theory that the shape parameters β1 and β2 are rate-
independent [6]. Then the scale parameters σ01 and σ02
can be calculated based on the Weibull plot and the
given β1 and β2.

From Table II it can be seen that the scale parameters
σ01 and σ02 change little under quasi-static condition

T ABL E I I Weibull distribution parameters at different strain rates
(specimen gage length = 8 mm)

ε (s−1) σ01 β1 σ02 β2

10−4 4.48 2.75 1.88 12.3
10−3 4.50 2.75 1.90 12.3
200 5.80 2.77 2.60 12.5
700 6.07 2.75 3.00 12.2
1200 6.2 2.73 3.20 12.1
Average / 2.75 / 12.3

and apparently increase with strain rate under dynamic
condition. Hence we also simulate the relationship of
σ01, σ02 and strain rate as the following exponential
function:

σ01 = 3.75

(
ε̇ + 26

200

)0.0340

σ02 = 2.52

(
ε̇ + 40

200

)0.1140

(17)

Substituting the average values of β1 and β2,
Equation 17 and Equations 2 into 8, the constitutive
function of the fiber bundles can be established, the
dashed lines in Fig. 2 are the simulated results, which
fit the experimental data well.

4. Conclusion
• SiC fiber is a rate-dependent material. Its elastic

modulus E , strength σb and the failure strain εb of
the fiber bundles remain unchanged under quasi-
static condition (10−4–10−3 s−1), while apparently
increase with increasing strain rate under dynamic
condition (200–1200 s−1).

• The statistical results show that the dynamic
strength distribution of SiC fiber complies with
the bi-modal Weibull distribution. The bi-modal
Weibull constitutive model can describe the stress-
strain relationship of the fiber bundles under dif-
ferent strain rates. The relationship between scale
parameters σ01, σ02 and the strain rate can be ex-
pressed as an exponential function.
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